https://drive.google.com/drive/u/1/folders/1zX2ieWLaUXsQOElqJn5aIqh06OJrCB7j

Comment; Taurine has so many roles and effects on the brain and elsewhere, unfortunately it doesn’t cross the intact blood-brain barrier (BBB) well. It counteracts many of the things that cause damage to cells including oxidative stress, hypoxia etc, doesn’t cross tight junctions, is responsible for appropriate migration & differentiation of cells. A molecule worthy of further study!

Harris Ripps,1,2 Wen Shen3
1Departments of Ophthalmology and Visual Science, Anatomy and Cell Biology, Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL; 2The Marine Biological Laboratory, Woods Hole, MA; 3Department of Biomedical Science, College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL


Taurine is an organic osmolyte involved in cell volume regulation, and provides a substrate for the formation of bile salts.
It plays a role in the modulation of intracellular free calcium concentration, and although it is one of the few amino acids not incorporated into proteins, taurine is one of the most abundant amino acids in the brain, retina, muscle tissue, and organs throughout the body. Taurine serves a wide variety of functions in the central nervous system, from development to cytoprotection, and taurine deficiency is associated with cardiomyopathy, renal dysfunction, developmental abnormalities, and severe damage to retinal neurons. All ocular tissues contain taurine, and quantitative analysis of ocular tissue extracts of the rat eye revealed that taurine was the most abundant amino acid in the retina, vitreous, lens, cornea, iris, and ciliary body. In the retina, taurine is critical for photoreceptor development and acts as a cytoprotectant against
stress-related neuronal damage and other pathological conditions. Despite its many functional properties, however, the cellular and biochemical mechanisms mediating the actions of taurine are not fully known. Nevertheless, considering its broad distribution, its many cytoprotective attributes, and its functional significance in cell development, nutrition,
and survival, taurine is undoubtedly one of the most essential substances in the body. Interestingly, taurine satisfies many of the criteria considered essential for inclusion in the inventory of neurotransmitters, but evidence of a taurine-specific receptor has yet to be identified in the vertebrate nervous system. In this report, we present a broad overview of the functional properties of taurine, some of the consequences of taurine deficiency, and the results of studies in animal models suggesting that taurine may play a therapeutic role in the management of epilepsy and diabetes.

Dr. Raymond Oenbrink